35k^2-32k+7=4

Simple and best practice solution for 35k^2-32k+7=4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 35k^2-32k+7=4 equation:


Simplifying
35k2 + -32k + 7 = 4

Reorder the terms:
7 + -32k + 35k2 = 4

Solving
7 + -32k + 35k2 = 4

Solving for variable 'k'.

Reorder the terms:
7 + -4 + -32k + 35k2 = 4 + -4

Combine like terms: 7 + -4 = 3
3 + -32k + 35k2 = 4 + -4

Combine like terms: 4 + -4 = 0
3 + -32k + 35k2 = 0

Begin completing the square.  Divide all terms by
35 the coefficient of the squared term: 

Divide each side by '35'.
0.08571428571 + -0.9142857143k + k2 = 0

Move the constant term to the right:

Add '-0.08571428571' to each side of the equation.
0.08571428571 + -0.9142857143k + -0.08571428571 + k2 = 0 + -0.08571428571

Reorder the terms:
0.08571428571 + -0.08571428571 + -0.9142857143k + k2 = 0 + -0.08571428571

Combine like terms: 0.08571428571 + -0.08571428571 = 0.00000000000
0.00000000000 + -0.9142857143k + k2 = 0 + -0.08571428571
-0.9142857143k + k2 = 0 + -0.08571428571

Combine like terms: 0 + -0.08571428571 = -0.08571428571
-0.9142857143k + k2 = -0.08571428571

The k term is -0.9142857143k.  Take half its coefficient (-0.4571428572).
Square it (0.2089795919) and add it to both sides.

Add '0.2089795919' to each side of the equation.
-0.9142857143k + 0.2089795919 + k2 = -0.08571428571 + 0.2089795919

Reorder the terms:
0.2089795919 + -0.9142857143k + k2 = -0.08571428571 + 0.2089795919

Combine like terms: -0.08571428571 + 0.2089795919 = 0.12326530619
0.2089795919 + -0.9142857143k + k2 = 0.12326530619

Factor a perfect square on the left side:
(k + -0.4571428572)(k + -0.4571428572) = 0.12326530619

Calculate the square root of the right side: 0.351091592

Break this problem into two subproblems by setting 
(k + -0.4571428572) equal to 0.351091592 and -0.351091592.

Subproblem 1

k + -0.4571428572 = 0.351091592 Simplifying k + -0.4571428572 = 0.351091592 Reorder the terms: -0.4571428572 + k = 0.351091592 Solving -0.4571428572 + k = 0.351091592 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '0.4571428572' to each side of the equation. -0.4571428572 + 0.4571428572 + k = 0.351091592 + 0.4571428572 Combine like terms: -0.4571428572 + 0.4571428572 = 0.0000000000 0.0000000000 + k = 0.351091592 + 0.4571428572 k = 0.351091592 + 0.4571428572 Combine like terms: 0.351091592 + 0.4571428572 = 0.8082344492 k = 0.8082344492 Simplifying k = 0.8082344492

Subproblem 2

k + -0.4571428572 = -0.351091592 Simplifying k + -0.4571428572 = -0.351091592 Reorder the terms: -0.4571428572 + k = -0.351091592 Solving -0.4571428572 + k = -0.351091592 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '0.4571428572' to each side of the equation. -0.4571428572 + 0.4571428572 + k = -0.351091592 + 0.4571428572 Combine like terms: -0.4571428572 + 0.4571428572 = 0.0000000000 0.0000000000 + k = -0.351091592 + 0.4571428572 k = -0.351091592 + 0.4571428572 Combine like terms: -0.351091592 + 0.4571428572 = 0.1060512652 k = 0.1060512652 Simplifying k = 0.1060512652

Solution

The solution to the problem is based on the solutions from the subproblems. k = {0.8082344492, 0.1060512652}

See similar equations:

| -5(h-1)-15=85 | | 2-8+3x=7 | | -14=-.7x | | y+10+41=180 | | x^(2/3)-8x=0 | | 12-4x=18+4x | | 32x=8/3 | | y+10=41 | | 14-(3)*x=2 | | -3.2-x=19.4 | | (4u-7)(6+u)=0 | | -11.4w+2w+3.4w=48 | | 3y+2(y-8)=8y-5(y-10) | | 14n-20=2(7n-10) | | 9x+24=3x | | 126=140-.7x | | 7x-(6x+7)=2x-30 | | -9m-3=24 | | 5y+110=180 | | 2p+(35+13p)+35= | | 3(x+8)+4=3x+2 | | 5y=110 | | 9k=-81+9k | | 2x+5-2x=13 | | 1+4n=8n+1 | | x-2y=700 | | y-5y-11=13 | | 3x-8+9x=9x+72+9 | | -6y-4y=-100 | | 5x-27+4x=180 | | 1.25=2g-3.5 | | 8x+c=7d |

Equations solver categories